Content :
Introduction to electronics
Mobility
Mobility of electron
Temperature with standing capacity
- 1. Leakage current
- 2. Temperature with standing capacity
- 3. Peak inverse voltage
Crystal lattice
Semiconductor
- 1. Intrinsic semiconductor (pure)
- 2. Extrinsic semiconductor (impure)
Trivalent impurity
Doping
- 1. Ordinary p-n diodes
- 2. Zener diode
- 3. Tunnel diode
Drift current
Current density
Diffusion current
Diode application
- 1. Linear resistor
- 2. Ideal diode
- 3. Practical diode
- 4. Piece-wise linear model
Clippers
- 1. Shint clipper
- 2. Series clipper
- 3. Output following input design
- 4. Two independent level clipping
- 5. Alternators
- 6. Single branch design
- 7. Multi branch design
Technique in clamper
Voltage multiplier
Problems
Alternator
Single branch design
Diode resistance
- 1. Static resistance
- 2. Dynamic resistance
Mathematical analysis
Junction capacitance
- 1. Transition capacitance
- 2. Diffusion capacitance
- 1. Half wave rectifier
- 2. Full wave rectifier with centre tap
- 3. Bridge rectifier
BJT
- Principle of BJT
- 1. Emitter injection efficiency
- 2. Base transport factor
- 3. Large signal current gain
- BJT configuration
- Common base
- Common emitter
- Common collector
- CE amplifier
- AC analysis
- AC load line
- Stability factor
- Biasing circuits
- 1. Stabilization technique
- a. Fixed bias
- b. Collector to base
- c. Voltage divider bias
- 2. Compensation
- a. Diode
- b. Thermistor
- c. sensistor
- Compensation through sensistor
- Position of Q point on DC load line
- Conclusion
- Thermal runaway
- Thermal parameters
- Power transistor
- BJT application
- CE amplifier
- RC coupled BJT amplifier
- Direct coupled BJT amplifier
- Analysis of CE amplifier
- Properties of CE amplifier
- Miller theorem
- CC amplifier
- Early effect
- Output resistance
- Breakdown mechanism in BJT
- 1. thermal runaway
- 2. punch through
- 3. avalanche breakdown
- Small signal analysis of BJT
- Types of basic amplifier
- 1. voltage amplifier
- 2. current amplifier
- 3. transconductance amplifier
- 4. transresistance amplifier
- Linear 2 port network
- Y parameters
- H parameters
- G parameters
- Low frequency analysis of BJT
- Typical value of h-parameters
- Amplifier analysis at low frequencies
- BJT characteristics analysis
- 1. current gain
- 2. input impedance
- 3. voltage gain
- 4. output impedence
- Approximation method of CE
- CE amplifier
- High frequency analysis of BJT
- Hybrid PIE parameters
- Capacitance
- 1. internal capacitance
- a. cd-diffusion
- b. ct-transition
- External capacitance
- a. cc-coupling
- b. ce-bypass
- Low frequency range
- High frequency range
- Mid band range
- Practical amplifier design
- 1. CE bypass amplifier
- 2. CE un bypass amplifier
- 3. CC amplifier
- 4. CB amplifier
- Feedback theory
- Topology
- 1. Block diagram analysis
- 2. Practical circuit analysis
- Procedure for feedback
- Integrated theory
- Multistage amplifier
- Effect of cascading on BW
- High cut-off frequency
- 1. Cascade amplifier
- 2. Darlington pair
- Emitter follower
- Coupling design
- 1. RC coupling
- 2. Direct coupling
- Direct coupled amplifier
- Testing of differential amplifier for various output
- Common input
- Large difference input
- Small difference input
- AC analysis
- Dc analysis
- Swamping resistor technique
- Current mirror biasing
- 1. Simple current mirror
- 2. Modified current mirror
- 3. Micro level current mirror
- CMRR (common mode rejection ratio)
- Application of op-amp
- Linear application
- Non-linear application
- 1. Inverting amplifier
- 2. Non-inverting amplifier
- 3. Phase shifter
- 4. Voltage follower
- 5. Differential amplifier
- 6. Subtractor
- 7. Inverter adder
- 8. Non-inverting adder
- 9. Current to voltage converter
- 10. Voltage to current converters
- 11. Voltage limiter
- 12. Logarithmic amplifier
- 13. Antilog amplifier
- 14. Precision rectifier
- 15. Instrumental amplifier
- 16. Modulator
- 17. Demodulator
- 18. Integrator
- 19. Differentiator
- 20. Active filter
- Frequency domain analysis
- Band reject filter
- All pass filter
- Non-linear application
- Communication system
- Problems
- Mono stable multi vibrator
- Introduction
- Types
- 1. N-channel
- 2. P-channel
- Working principle
- FET parameters
- 1. AC drain resistance
- 2. Transconductance
- 3. Amplification
- FET biasing
- FET amplifier
- N-channel enhancement mosfet (NMOS)
- Power amplifier
- Class A amplifier
- Dc condition
- Power dissipation
- Class B power amplifier
- Push pull class B power amplifier
- Cross over distortion